Physics 513, Quantum Field Theory
 Homework 4

Due Tuesday, 30th September 2003
Jacob Lewis Bourjaily

1. We have defined the coherent state by the relation

$$
\left|\left\{\eta_{k}\right\}\right\rangle \equiv \mathcal{N} \exp \left\{\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\eta_{k} a_{k}^{\dagger}}{\sqrt{2 E_{k}}}\right\}|0\rangle
$$

For my own personal convenience throughout this solution, I will let

$$
\mathcal{A} \equiv \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\eta_{k} a_{k}^{\dagger}}{\sqrt{2 E_{k}}} .
$$

a) Lemma: $\left[a_{p}, e^{\mathcal{A}}\right]=\frac{\eta_{p}}{\sqrt{2 E_{p}}} e^{\mathcal{A}}$.
proof: First we note that from simple Taylor expansion (which is justified here),

$$
e^{\mathcal{A}}=1+\mathcal{A}+\frac{\mathcal{A}^{2}}{2}+\frac{\mathcal{A}^{3}}{3!}+\ldots
$$

Clearly a_{p} commutes with 1 so we may write,

$$
\begin{aligned}
{\left[a_{p}, e^{\mathcal{A}}\right] } & =\left[a_{p}, \mathcal{A}\right]+\frac{1}{2}\left[a_{p}, \mathcal{A}^{2}\right]+\frac{1}{3!}\left[a_{p}, \mathcal{A}^{3}\right]+\ldots, \\
& =\left[a_{p}, \mathcal{A}\right]+\frac{1}{2}\left(\left[a_{p}, \mathcal{A}\right] \mathcal{A}+\mathcal{A}\left[a_{p}, \mathcal{A}\right]\right)+\frac{1}{3!}\left(\left[a_{p}, \mathcal{A}\right] \mathcal{A}^{2}+\mathcal{A}\left[a_{p}, \mathcal{A}\right] \mathcal{A}+\mathcal{A}\left[a_{p}, \mathcal{A}\right] \mathcal{A}\right)+\ldots, \\
& \stackrel{*}{=}\left[a_{p}, \mathcal{A}\right]\left(1+\mathcal{A}+\frac{\mathcal{A}^{2}}{2}+\frac{\mathcal{A}^{3}}{3!}+\frac{\mathcal{A}^{4}}{4!}+\ldots\right), \\
& =\left[a_{p}, \mathcal{A}\right] e^{\mathcal{A}}
\end{aligned}
$$

Note that the step labelled ${ }^{*}$ ' is unjustified. To allow the use of '*' we must show that $\left[a_{p}, \mathcal{A}\right]$ is an invariant scalar and therefore commutes with all the \mathcal{A} 's. This is shown by direct calculation.

$$
\begin{aligned}
{\left[a_{p}, \mathcal{A}\right] } & =\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\eta_{k}}{\sqrt{2 E_{k}}}\left[a_{p}, a_{k}^{\dagger}\right] \\
& =\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\eta_{k}}{\sqrt{2 E_{k}}}(2 \pi)^{3} \delta^{(3)}(\vec{p}-\vec{k}), \\
& =\frac{\eta_{p}}{\sqrt{2 E_{p}}}
\end{aligned}
$$

This proves what was required for ${ }^{\prime *}$.' $\frac{\eta_{p}}{\sqrt{2 E_{p}}}$ is clearly a scalar because η and E_{p} are real numbers only. But by demonstrating the value of $\left[a_{p}, \mathcal{A}\right]$ we can complete the proof of the required lemma. Clearly,

$$
\left[a_{p}, e^{\mathcal{A}}\right]=\left[a_{p}, \mathcal{A}\right] e^{\mathcal{A}}=\frac{\eta_{p}}{\sqrt{2 E_{p}}} e^{\mathcal{A}}
$$

ó $\pi \epsilon \rho$ '้́ $\delta \epsilon \iota \delta \epsilon \grave{\imath} \xi \alpha \iota$
It is clear from the definition of the commutator that $a_{p} e^{\mathcal{A}}=\left[a_{p}, e^{\mathcal{A}}\right]+e^{\mathcal{A}} a_{p}$. Therefore it is intuitively obvious, and also proven that

$$
\begin{align*}
a_{p}\left|\left\{\eta_{k}\right\}\right\rangle & =\mathcal{N} a_{p} e^{\mathcal{A}}|0\rangle, \\
& =\mathcal{N}\left(\left[a_{p}, e^{\mathcal{A}}\right]+e^{\mathcal{A}} a_{p}\right)|0\rangle, \\
& =\mathcal{N} \frac{\eta_{p}}{\sqrt{2 E_{p}}}|0\rangle+\mathcal{N} e^{\mathcal{A}} a_{p}|0\rangle, \\
\therefore a_{p}\left|\left\{\eta_{k}\right\}\right\rangle & =\frac{\eta_{p}}{\sqrt{2 E_{p}}} a_{p}\left|\left\{\eta_{k}\right\}\right\rangle . \tag{1.1}
\end{align*}
$$

b) We are to compute the normalization constant \mathcal{N} so that $\left\langle\left\{\eta_{k}\right\} \mid\left\{\eta_{k}\right\}\right\rangle=1$. I will proceed by direct calculation.

$$
\begin{aligned}
1 & =\left\langle\left\{\eta_{k}\right\} \mid\left\{\eta_{k}\right\}\right\rangle, \\
& =\mathcal{N}^{*}\langle 0| e^{\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\eta_{k} a_{k}}{\sqrt{2 E_{k}}}}\left|\left\{\eta_{k}\right\}\right\rangle, \\
& =\mathcal{N}^{*}\langle 0| e^{\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\eta_{k}}{\sqrt{2 E_{k}}}}\left|\left\{\eta_{k}\right\}\right\rangle
\end{aligned}
$$

because we know that $a_{k}\left|\left\{\eta_{k}\right\}\right\rangle=\frac{\eta_{k}}{\sqrt{2 E_{k}}}\left|\left\{\eta_{k}\right\}\right\rangle$. So clearly

$$
\begin{aligned}
1 & =|\mathcal{N}|^{2} e^{\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\eta_{k}^{2}}{2 E_{k}}}, \\
\therefore \mathcal{N} & =e^{-\frac{1}{2} \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\eta_{k}^{2}}{2 E_{k}}}
\end{aligned}
$$

c) We will find the expectation value of the field $\phi(x)$ by direct calculation as before.

$$
\begin{aligned}
\overline{\phi(x)}=\left\langle\left\{\eta_{k}\right\}\right| \phi(x)\left|\left\{\eta_{k}\right\}\right\rangle & =\left\langle\left\{\eta_{k}\right\}\right| \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{p}}}\left(a_{p} e^{i \vec{p} \cdot \vec{x}}+a_{p}^{\dagger} e^{-i \vec{p} \cdot \vec{x}}\right)\left|\left\{\eta_{k}\right\}\right\rangle, \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{p}}}(\underbrace{\left\langle\left\{\eta_{k}\right\}\right| a_{p} e^{i \vec{p} \cdot \vec{x}}\left|\left\{\eta_{k}\right\}\right\rangle}_{\text {act with } a_{p} \text { to the right }}+\underbrace{\left\langle\left\{\eta_{k}\right\}\right| a_{p}^{\dagger} e^{-i \vec{p} \cdot \vec{x}}\left|\left\{\eta_{k}\right\}\right\rangle}_{\text {act with } a_{p}^{\dagger} \text { to the left }}), \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{p}}}\left(\frac{\eta_{p}}{\sqrt{2 E_{p}}} e^{i \vec{p} \cdot \vec{x}}+\frac{\eta_{p}}{\sqrt{2 E_{p}}} e^{-i \vec{p} \cdot \vec{x}}\right), \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{\eta_{p}}{E_{p}} \cos (\vec{p} \cdot \vec{x}) .
\end{aligned}
$$

d) We will compute the expected particle number directly.

$$
\begin{aligned}
\bar{N}=\left\langle\left\{\eta_{k}\right\}\right| N\left|\left\{\eta_{k}\right\}\right\rangle & =\left\langle\left\{\eta_{k}\right\}\right| \int \frac{d^{3} p}{(2 \pi)^{3}} a_{p}^{\dagger} a_{p}\left|\left\{\eta_{k}\right\}\right\rangle, \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}}\left(\left\langle\left\{\eta_{k}\right\}\right| a_{p}^{\dagger}\right. \\
a_{p}\left|\left\{\eta_{k}\right\}\right\rangle &), \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{\eta_{p}^{2}}{2 E_{p}} .
\end{aligned}
$$

e) To compute the mean square dispersion, let us recall the theorem of elementary probability theory that

$$
\left\langle(\Delta N)^{2}\right\rangle=\overline{N^{2}}-\bar{N}^{2}
$$

We have already calculated \bar{N} so it is trivial to note that

$$
\bar{N}^{2}=\int \frac{d^{3} k d^{3} p}{(2 \pi)^{6}} \frac{\eta_{k}^{2} \eta_{p}^{2}}{4 E_{k} E_{p}} .
$$

Let us then calculate $\overline{N^{2}}$.

$$
\begin{aligned}
\overline{N^{2}}=\left\langle\left\{\eta_{k}\right\}\right| N^{2}\left|\left\{\eta_{k}\right\}\right\rangle & =\left\langle\left\{\eta_{k}\right\}\right| \int \frac{d^{3} k d^{3} p}{(2 \pi)^{6}} a_{k}^{\dagger} a_{k} a_{p}^{\dagger} a_{p}\left|\left\{\eta_{k}\right\}\right\rangle, \\
& =\int \frac{d^{3} k d^{3} p}{(2 \pi)^{6}} \frac{\eta_{k} \eta_{p}}{2 \sqrt{E_{k} E_{p}}}\left\langle\left\{\eta_{k}\right\}\right| a_{k} a_{p}^{\dagger}\left|\left\{\eta_{k}\right\}\right\rangle, \\
& =\int \frac{d^{3} k d^{3} p}{(2 \pi)^{6}} \frac{\eta_{k} \eta_{p}}{2 \sqrt{E_{k} E_{p}}}\left((2 \pi)^{3} \delta^{(3)}(\vec{k}-\vec{p})+\left\langle\left\{\eta_{k}\right\}\right| a_{p}^{\dagger} a_{k}\left|\left\{\eta_{k}\right\}\right\rangle\right), \\
& =\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\eta_{k}^{2}}{2 E_{k}}+\int \frac{d^{3} k d^{3} p}{(2 \pi)^{6}} \frac{\eta_{k}^{2} \eta_{p}^{2}}{4 E_{k} E_{p}} .
\end{aligned}
$$

It is therefore quite easy to see that

$$
\left\langle(\Delta N)^{2}\right\rangle=\overline{N^{2}}-\bar{N}^{2}=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\eta_{k}^{2}}{2 E_{k}} .
$$

2. We are given the Lorentz commutation relations,

$$
\left[J^{\mu \nu}, J^{\rho \sigma}\right]=i\left(g^{\nu \rho} J^{\mu \sigma}-g^{\mu \rho} J^{\nu \sigma}-g^{\nu \sigma} J^{\mu \rho}+g^{\mu \sigma} J^{\nu \rho}\right)
$$

a) Given the generators of rotations and boosts defined by,

$$
L^{i}=\frac{1}{2} \epsilon^{i j k} J^{j k} \quad K^{i}=J^{0 i}
$$

we are to explicitly calculate all the commutation relations. We are given trivially that

$$
\left[L^{i}, L^{j}\right]=i \epsilon^{i j k} L^{k}
$$

Let us begin with the K 's. By direct calculation,

$$
\begin{aligned}
{\left[K^{i}, K^{j}\right] } & =\left[J^{0 i}, J^{0 j}\right]=i\left(g^{0 i} J^{0 j}-g^{00} J^{i j}-g^{i j} J^{00}+g^{0 j} J^{i 0}\right) \\
& =-i J^{i j} \\
& =-2 i \epsilon^{i j k} L^{k} .
\end{aligned}
$$

Likewise, we can directly compute the commutator between the L and K 's. This also will follow by direct calculation.

$$
\begin{aligned}
{\left[L^{i}, K^{j}\right] } & =\frac{1}{2} \epsilon^{l k}\left[J^{i l k}, J^{0 j}\right] \\
& =\frac{1}{2} \epsilon^{i l k} i\left(g^{l 0} J^{i j}-g^{i 0} J^{l j}-g^{l j} J^{i 0}+g^{i j} J^{l 0}\right) \\
& =i \epsilon^{i j k} J^{0 k} \\
& =i \epsilon^{i j k} K^{k}
\end{aligned}
$$

We were also to show that the operators

$$
J_{+}^{i}=\frac{1}{2}\left(L^{i}+i K^{i}\right) \quad J_{-}^{i}=\frac{1}{2}\left(L^{i}-i K^{i}\right),
$$

could be seen to satisfy the commutation relations of angular momentum. First let us compute,

$$
\begin{aligned}
{\left[J_{+}, J_{-}\right] } & =\frac{1}{4}\left[\left(L^{i}+i K^{i}\right),\left(L^{j}-i K^{i}\right)\right], \\
& =\frac{1}{4}\left(\left[L^{i}, L^{j}\right]+i\left[K^{i}, L^{j}\right]-i\left[L^{i}, K^{j}\right]+\left[K^{i}, K^{j}\right]\right), \\
& =0
\end{aligned}
$$

In the last line it was clear that I used the commutator $\left[L^{i}, K^{j}\right]$ derived above. The next two calculations are very similar and there is a lot of 'justification' algebra in each step. There is essentially no way for me to include all of the details of every step, but each can be verified (e.g. $i\left[K^{i}, L^{j}\right]=-i\left[L^{j}, K^{i}\right]=(-i) i \epsilon^{j i k} K^{k}=-\epsilon^{i j k} K^{k} \ldots e t c$). They are as follows:

$$
\begin{aligned}
{\left[J_{+}^{i}, J_{+}^{j}\right] } & =\frac{1}{4}\left[\left(L^{i}+i K^{i}\right),\left(L^{j}+i K^{j}\right)\right] \\
& =\frac{1}{4}\left(\left[L^{i}, L^{j}\right]+i\left[K^{i}, L^{j}\right]+i\left[L^{i}, K^{j}\right]+i\left[L^{i}, K^{i}\right]-\left[K^{i}, K^{j}\right]\right) \\
& =\frac{1}{4}\left(i \epsilon^{i j k} L^{k}-\epsilon^{i j k} K^{k}-\epsilon^{i j k} K^{k}+i \epsilon^{i j k} L^{k}\right) \\
& =i \epsilon^{i j k} \frac{1}{2}\left(L^{k}+i K^{k}\right)=i \epsilon^{i j k} J_{+}^{k}
\end{aligned}
$$

Likewise,

$$
\begin{aligned}
{\left[J_{-}^{i}, J_{-}^{j}\right] } & =\frac{1}{4}\left[\left(L^{i}-i K^{i}\right),\left(L^{j}-i K^{j}\right)\right] \\
& =\frac{1}{4}\left(\left[L^{i}, L^{j}\right]-i\left[K^{i}, L^{j}\right]-i\left[L^{i}, K^{j}\right]+i\left[L^{i}, K^{i}\right]-\left[K^{i}, K^{j}\right]\right) \\
& =\frac{1}{4}\left(i \epsilon^{i j k} L^{k}+\epsilon^{i j k} K^{k}+\epsilon^{i j k} K^{k}+i \epsilon^{i j k} L^{k}\right) \\
& =i \epsilon^{i j k} \frac{1}{2}\left(L^{k}-i K^{k}\right)=i \epsilon^{i j k} J_{-}^{k}
\end{aligned}
$$

b) Let us consider first the $\left(0, \frac{1}{2}\right)$ representation. For this representation we will need to satisfy

$$
J_{+}^{i}=\frac{1}{2}\left(L^{i}+i K^{i}\right)=0 \quad J_{-}^{i}=\frac{1}{2}\left(L^{i}-i K^{k}\right)=\frac{\sigma^{i}}{2}
$$

This is obtained by taking $L^{i}=\frac{\sigma^{i}}{2}$ and $K^{i}=\frac{i \sigma^{i}}{2}$. The transformation law then of the $\left(0, \frac{1}{2}\right)$ representation is

$$
\begin{aligned}
\Phi_{\left(0, \frac{1}{2}\right)} & \longrightarrow e^{-i \omega_{\mu \nu} J^{\mu \nu}} \Phi_{\left(0, \frac{1}{2}\right)}, \\
& =e^{-i\left(\theta^{i} L^{i}+\beta^{j} K^{j}\right)} \Phi_{\left(0, \frac{1}{2}\right)}, \\
& =e^{-\frac{i \theta^{i} \sigma^{i}}{2}+\frac{\beta^{j} K^{j}}{2}} \Phi_{\left(0, \frac{1}{2}\right)} .
\end{aligned}
$$

The calculation for the $\left(\frac{1}{2}, 0\right)$ representation is very similar. Taking $L^{i}=\frac{\sigma^{i}}{2}$ and $K^{i}=-\frac{\sigma^{i}}{2}$, we get

$$
J_{+}^{i}=\frac{1}{2}\left(L^{i}+i K^{i}\right)=\frac{\sigma^{i}}{2} \quad J_{-}^{i}=\frac{1}{2}\left(L^{i}-i K^{k}\right)=0 .
$$

Then the transformation law of the representation is

$$
\begin{aligned}
\Phi_{\left(\frac{1}{2}, 0\right)} & \longrightarrow e^{-i \omega_{\mu \nu} J^{\mu \nu}} \Phi_{\left(\frac{1}{2}, 0\right)}, \\
& =e^{-i\left(\theta^{i} L^{i}+\beta^{j} K^{j}\right.} \Phi_{\left(\frac{1}{2}, 0\right)}, \\
& =e^{-\frac{i \theta^{i} \sigma^{i}}{2}-\frac{\beta^{j} K^{j}}{2}} \Phi_{\left(\frac{1}{2}, 0\right)} .
\end{aligned}
$$

Comparing these transformation laws with Peskin and Schroeder's (3.37), we see that

$$
\psi_{L}=\Phi_{\left(\frac{1}{2}, 0\right)} \quad \psi_{R}=\Phi_{\left(0, \frac{1}{2}\right)}
$$

3. a) We are given that T_{a} is a representation of some Lie group. This means that

$$
\left[T_{a}, T_{b}\right]=i f^{a b c} T_{c}
$$

by definition. Allow me to take the complex conjugate of both sides. Note that $\left[T_{a}, T_{b}\right]=$ $\left[\left(-T_{a}\right),\left(-T_{b}\right)\right]$ in general and recall that $f^{a b c}$ are real.

$$
\begin{aligned}
{\left[T_{a}, T_{b}\right]^{*} } & =\left(i f^{a b c} T_{c}\right)^{*} \\
{\left[T_{a}^{*}, T_{b}^{*}\right] } & =-i f^{a b c} T_{c}^{*} \\
\therefore\left[\left(-T_{a}^{*}\right),\left(-T_{b}^{*}\right)\right] & =i f^{a b c}\left(-T_{c}^{*}\right) .
\end{aligned}
$$

So by the definition of a representation, it is clear that $\left(-T_{a}^{*}\right)$ is also a representation of the algebra.
b) As before, we are given that T_{a} is a representation of some Lie group. We will take the Hermitian adjoint of both sides.

$$
\begin{aligned}
{\left[T_{a}, T_{b}\right]^{\dagger} } & =\left(i f^{a b c} T_{c}\right)^{\dagger}, \\
\left(T_{a} T_{b}\right)^{\dagger}-\left(T_{b} T_{a}\right)^{\dagger} & =-i f^{a b c} T_{c}^{\dagger} \\
T_{b}^{\dagger} T_{a}^{\dagger}-T_{a}^{\dagger} T_{b}^{\dagger} & =-i f^{a b c} T_{c}^{\dagger} \\
{\left[T_{b}^{\dagger}, T_{a}^{\dagger}\right] } & =-i f^{a b c} T_{c}^{\dagger} \\
\therefore\left[T_{a}^{\dagger}, T_{b}^{\dagger}\right] & =i f^{a b c} T_{c}^{\dagger}
\end{aligned}
$$

So by the definition of a representation, it is clear that $T_{a_{a}}^{\dagger}$ is a representation of the algebra.
c) We define the spinor representation of $S U(2)$ by $T_{a}=\frac{\sigma^{a}}{2}$ so that

$$
T_{1} \equiv \frac{1}{2}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad T_{2} \equiv \frac{1}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad T_{3} \equiv \frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

We will consider the matrix $S=i \sigma^{2}$. Clearly S is unitary because $\left(i \sigma^{2}\right)\left(i \sigma^{2}\right)^{\dagger}=1$. Now, one could proceed by direct calculation to demonstrate that
$S T_{1} S^{\dagger}=\frac{1}{2}\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)=-T_{1}^{*} \quad S T_{2} S^{\dagger}=\frac{1}{2}\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)=-T_{2}^{*} \quad S T_{3} S^{\dagger}=\frac{1}{2}\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)=-T_{3}^{*}$.
This clearly demonstrates that the representation $-T_{a}^{*}$ is equivalent to that of T_{a}.
d) From our definitions of our representation of $S O(3,1)$ using J_{+}^{i} and J_{-}^{i}, it is clear that

$$
\left(J_{+}^{i}\right)^{\dagger}=J_{-}^{i} .
$$

This could be expressed as if $\left(\frac{1}{2}, 0\right)^{\dagger}=\left(0, \frac{1}{2}\right)$, or, rather $L^{\dagger}=R$. So what we must ask ourselves is, does there exist a unitary matrix S such that

$$
S L S^{\dagger}=L \quad \text { but } \quad S K S^{\dagger}=-K ?
$$

If there did exist such a unitary transformation, then we could conclude that L and R are equivalent representations. However, this is not possible in our $S O(3,1)$ representation because both L and K are represented strictly by the Pauli spin matrices so that $i K=L=$ $\frac{\sigma}{2}$. It is therefore clear that there cannot exist a transformation that will change the sign of K yet leave L alone. So the representations are inequivalent.

